91¶¶Òõ

  • Skip to content
  • Skip to footer
  • Accessibility options
91¶¶Òõ
  • About us
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • Study here
    • Get to know us
    • Why choose 91¶¶Òõ?
    • Explore our prospectus
    • Chat to our students
    • Ask us a question
    • Meet us
    • Open days and visits
    • Virtual tours
    • Applicant days
    • Meet us in your country
    • Campuses
    • Our campuses
    • Our city
    • Accommodation options
    • Our halls
    • Helping you find a home
    • What you can study
    • Find a course
    • Full A-Z course list
    • Explore our subjects
    • Our academic departments
    • How to apply
    • Undergraduate application process
    • Postgraduate application process
    • International student application process
    • Apprenticeships
    • Transfer from another university
    • International students
    • Clearing
    • Funding your time at uni
    • Fees and financial support
    • What's included in your fees
    • 91¶¶Òõ Boost – extra financial help
    • Advice and guidance
    • Advice for students
    • Guide for offer holders
    • Advice for parents and carers
    • Advice for schools and colleges
    • Supporting you
    • Your academic experience
    • Your wellbeing
    • Your career and employability
  • Research
    • Research and knowledge exchange
    • Research and knowledge exchange organisation
    • The Global Challenges
    • Centres of Research Excellence (COREs)
    • Research Excellence Groups (REGs)
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Featured research and knowledge exchange projects
    • Research and knowledge exchange news
    • Inaugural lectures
    • Research and knowledge exchange publications and films
    • Academic staff search
  • About us
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Accessibility
Search our site
Aerial view of the Moulsecoomb campus
About us
  • Your university
  • Governance and structure
  • Working with us
  • Statistics and legal
  • News and events
  • Contact us
  • News and events
    • News and events
    • News
    • Events
    • Coronavirus
    • Livestream
    • Open lectures
    • Term dates
  • News
    • News
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013

91¶¶Òõ research aiding pioneering new zero emission and engine technology

Insights developed by Dr Konstantina Vogiatzaki are pointing the way to innovative future energy generation mechanisms based on liquefied gases.

18 February 2021

Working within 91¶¶Òõ's with funding from an Engineering and Physical Sciences Research Council (EPSRC) Innovation UK , Dr Vogiatzaki – Reader in the School of Computing, Engineering and Mathematics - has provided new fundamental knowledge and advanced numerical tools relating to the atomisation, heating and evaporation characteristics of liquefied gases, with a view to generating energy using cryogenic injection of the gases. Her research featured as a cover story in the journal .

Dr Vogiatzaki said: “My EPSRC fellowship has enabled me to work in the exciting field of cryogenics, developing technologies that can help tackle pressing energy sustainability challenges. Although my primarily field of research is in energy and transportation the knowledge that I and my group have built can be useful in a range of fields including medicine, space and quantum computing.”

Liquid gases such as air, nitrogen or natural gas can serve as cost-effective energy vectors within power production units, as well as providing transport "fuels" with zero emissions. For example, energy from renewables can be used to cool air or nitrogen to the point that they become liquids which, when injected into a higher temperature environment, return to gas form via a rapid 700-fold expansion in volume. This can drive a turbine or piston engine without any need for any form of combustion. Even better, the process can utilise waste heat from other processes.

Dr Konstantina Vogiatzaki

Dr Konstantina Vogiatzaki

Working in tandem with long-time 91¶¶Òõ collaborators Ricardo, Dr Vogiatzaki's work therefore offers the potential to boost the efficiency of futuristic engines such as Ricardo's .

Her fundamental research in the thermophysical properties of cryogenic fluids could also lead to further integration of cryogenic technologies into other fields. These include energy storage (through liquid air), space missions using cryogenic oxygen and hydrogen as fuels, cryosurgery that deploys cryogenic fluids against cancerous tissues, and even quantum computing (cryogenic conditions are required to reduce atomic level vibration that can disrupt quantum computing operations).

Back to top

Contact us

91¶¶Òõ
Mithras House
Lewes Road
91¶¶Òõ
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links Quick links

  • Courses
  • Open days
  • Explore our prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • The Student Contract

Information for Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents