91¶¶Òõ

  • Skip to content
  • Skip to footer
  • Accessibility options
91¶¶Òõ
  • About us
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • Study here
    • Get to know us
    • Why choose 91¶¶Òõ?
    • Explore our prospectus
    • Chat to our students
    • Ask us a question
    • Meet us
    • Open days and visits
    • Virtual tours
    • Applicant days
    • Meet us in your country
    • Campuses
    • Our campuses
    • Our city
    • Accommodation options
    • Our halls
    • Helping you find a home
    • What you can study
    • Find a course
    • Full A-Z course list
    • Explore our subjects
    • Our academic departments
    • How to apply
    • Undergraduate application process
    • Postgraduate application process
    • International student application process
    • Apprenticeships
    • Transfer from another university
    • International students
    • Clearing
    • Funding your time at uni
    • Fees and financial support
    • What's included in your fees
    • 91¶¶Òõ Boost – extra financial help
    • Advice and guidance
    • Advice for students
    • Guide for offer holders
    • Advice for parents and carers
    • Advice for schools and colleges
    • Supporting you
    • Your academic experience
    • Your wellbeing
    • Your career and employability
  • Research
    • Research and knowledge exchange
    • Research and knowledge exchange organisation
    • The Global Challenges
    • Centres of Research Excellence (COREs)
    • Research Excellence Groups (REGs)
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Featured research and knowledge exchange projects
    • Research and knowledge exchange news
    • Inaugural lectures
    • Research and knowledge exchange publications and films
    • Academic staff search
  • About us
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Accessibility
Search our site
regenrative medicine
Centre for Regenerative Medicine and Devices
  • Centre for Regenerative Medicine and Devices
  • What we do
  • Study or work with us
  • Who we are
  • What we do
  • Our research and enterprise projects
  • Bacteriophage

Infection-responsive biomaterials: bacteriophage-tethered wound dressings for a targeted therapy

Antibiotic-resistant infections now account for 25,000 deaths in Europe annually. Attention is now focused towards alternative approaches to infection control; bacteriophage therapy, well-established in Eastern Europe and the former Soviet Union (FSU), is increasingly being considered as one option. 

Lytic bacteriophages (phages) are viruses that can infect and kill bacteria through rupture of the cell membrane. Much expertise has been amassed in the use of phages to kill bacteria in vitro. While the safety and efficacy of clinical therapy has not been rigorously tested in the FSU, regulatory requirements are now being applied to phage preparations in the EU. 

One area that has received limited attention, but that will gain in importance as phage use becomes further established, is the incorporation of phage into medical materials to provide an antibacterial effect on contact of that material with the target bacterium. Such biomaterials could respond to an emergent infection before the clinical signs are evident, with potential to greatly improve patient prognosis. Phage-impregnated materials could be used as medical implants or wound dressings, and in applications relevant to hospital hygiene. 


Funded by the 91¶¶Òõ Scheme B initiative.

Project timeframe

The project runs from October 2015 to October 2018. 

Project aims

The project aimed to incorporate bacteriophages with efficacy against relevant wound bacteria, onto a range of biodegradable and biocompatible films. These materials are intended for the management and repair of skin injury, particularly burns, where the risk of infection is high.

Project findings and impact

The physical and chemical characterisation of a candidate biodegradable film material has been conducted, and a surface coating technique developed for the immobilisation of a range of bacteriophages to the material interface. The coating technique employed has been shown to increase the antibacterial efficacy of the material by increasing the numbers of infectious bacteriophages presented on the film surface.

 

Research team

Jack Barker 

Dr Iain Allan

Dr Cressida Bowyer

Dr Irina Savina

Professor Stephen Denyer

Output

In preparation:

Bacteriophages - Biology, Technology, Therapy, Edited by David Harper, Stephen Abedon, Benjamin Burrowes and Malcolm McConville

Chapter title: Delivery of bacteriophages

Author: J Barker

DOI:  

Online ISBN: 978-3-319-40598-8

Back to top

Contact us

91¶¶Òõ
Mithras House
Lewes Road
91¶¶Òõ
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links Quick links

  • Courses
  • Open days
  • Explore our prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • The Student Contract

Information for Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents