91¶¶Òõ

  • Skip to content
  • Skip to footer
  • Accessibility options
91¶¶Òõ
  • About us
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • Study here
    • Get to know us
    • Why choose 91¶¶Òõ?
    • Explore our prospectus
    • Chat to our students
    • Ask us a question
    • Meet us
    • Open days and visits
    • Virtual tours
    • Applicant days
    • Meet us in your country
    • Campuses
    • Our campuses
    • Our city
    • Accommodation options
    • Our halls
    • Helping you find a home
    • What you can study
    • Find a course
    • Full A-Z course list
    • Explore our subjects
    • Our academic departments
    • How to apply
    • Undergraduate application process
    • Postgraduate application process
    • International student application process
    • Apprenticeships
    • Transfer from another university
    • International students
    • Clearing
    • Funding your time at uni
    • Fees and financial support
    • What's included in your fees
    • 91¶¶Òõ Boost – extra financial help
    • Advice and guidance
    • Advice for students
    • Guide for offer holders
    • Advice for parents and carers
    • Advice for schools and colleges
    • Supporting you
    • Your academic experience
    • Your wellbeing
    • Your career and employability
  • Research
    • Research and knowledge exchange
    • Research and knowledge exchange organisation
    • The Global Challenges
    • Centres of Research Excellence (COREs)
    • Research Excellence Groups (REGs)
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Featured research and knowledge exchange projects
    • Research and knowledge exchange news
    • Inaugural lectures
    • Research and knowledge exchange publications and films
    • Academic staff search
  • About us
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Accessibility
Search our site
Image of checkland building falmer campus
About us
  • About us
  • Your university
  • Governance and structure
  • Working with us
  • Statistics and legal
  • News and events
  • Contact us
  • News and events
  • News
  • 2017
  • Striving for a healthier old age

Striving for a healthier old age

The greatest barrier to a healthy later life is no longer the rate of progress but the speed with which we can turn our growing knowledge of the biology of ageing into drugs and lifestyle advice.

4 August 2017

That’s the view of 91¶¶Òõ’s Professor of Biogerontology following publication of new research showing how scientists have substantially prolonged the life of mice.

Professor Richard Faragher, past chair of the British Society for Research on Ageing, said whether humans will ever be able to live significantly longer than the current maximum of 125 years was hard to tell but finding ways of keeping healthy in older age was becoming increasingly important.

Professor Faragher, in an article in The Conversation, the news site written by academics, said working out how to eliminate the damaging effects of ageing remains the primary goal.

He said: “If you are reading this and you don’t smoke, then . That’s because we have nearly eliminated mortality in early life, thanks to advances in science and engineering. But despite this progress, we still haven’t worked out how to eliminate the damaging effects of ageing itself.

Dr Richard Faragher

Dr Richard Faragher

“Now a new study in mice, , reveals that stem cells (a type of cell that can develop into many other types) in a specific area of the brain regulate ageing. The team even managed to slow down and speed up the ageing process by transplanting or deleting stem cells in the region.

“Ageing poses an important challenge for society. By 2050, there will be on Earth for the first time. This change is reflected in  on our health and social care systems. Understanding how we can keep ourselves in good health as we age is becoming increasingly important.

“The mechanisms that keep organisms healthy , which means we can learn a lot about them by studying animals such as mice. Among the most important are  – dysfunctional cells which build up as we age and cause damage to tissue – chronic inflammation and exhaustion of stem cells. These mechanisms are thought to be connected at the cell and tissue level. As with a ring of dominoes, a fall anywhere can trigger a catastrophic collapse.

“The researchers behind the new paper were studying the mouse hypothalamus, which we’ve known for some time . This almond-sized structure at the centre of the brain links the nervous and endocrine (hormone) systems. The hypothalamus helps regulate many basic needs and behaviours including hunger, sleep, fear and aggression. In the human brain, initiation of behaviours is usually complex, but if you flee in blind panic or find yourself in a blazing rage, then your hypothalamus is temporarily in the driving seat.

“The team looked at a specialised group of stem cells within the hypothalamus and monitored what happened to them as cohorts of mice aged. Mice normally live for about two years but they found that these cells began to disappear by about 11 months. By 22 months, they had vanished completely. The rate at which the stem cells was lost closely correlated with ageing changes in the animals, such as declines in learning, memory, sociability, muscle endurance and athletic performance.

The quest for a healthier old age. Photo by Huy Phan on Unsplash

The quest for a healthier old age. Photo by Huy Phan on Unsplash

"But correlation doesn’t mean causation. To find out if the decline was causing these ageing changes, they deleted stem cells using a specially engineered virus that would only kill them in the presence of the drug Ganciclovir. In 15-month-old mice, receiving this drug combination destroyed 70% of their hypothalamic stem cells. They prematurely displayed signs of ageing and died roughly 200 days earlier as a result. That’s significant as mice only live for about 730 days.

 “The group also implanted hypothalamic stem cells from newborn mice into middle-aged animals. In this case, the animals became more social, performed better cognitively and lived about 200 days longer than they otherwise would have.

“These experiments also provided clues to how the hypothalamic stem cells were being lost in the first place. The implantation only worked when the stem cells had been genetically engineered to be resistant to inflammation. It seems that, as the animals aged, chronic, low-grade inflammation in the hypothalamus increased.

“This inflammation is probably caused either by the  or surrounding . Inflammation kills the hypothalamic stem cells because they are the most sensitive to damage. This then disrupts the function of the hypothalamus with knock-on effects throughout the organism. And so the dominoes fall.

“The ultimate goal of ageing research is identifying pharmaceutical targets or lifestyle interventions that improve human health in later life. While this is a study in mice, if we can show that the same mechanisms are at play in humans we might one day be able to use a similar technique to improve health in later life. But this remains a long way in the future.

“Other interventions, such as removing senescent cells, also improve health,  in mice. A logical next step is to see if these interventions ‘stack’.

“Could we stop unsuccessful ageing in humans with the same technique? 

“The study also demonstrates that hypothalamic stem cells exert major effects through secreting miRNAs, which control many aspects of how cells function. MiRNAs are short, non-coding RNAs – a molecule that is simpler than DNA but can also encode information. When miRNAs were supplied alone to mice lacking stem cells they actually showed similar improvements to those who received stem-cell treatment.

“The delivery of miRNAs as drugs is still in its infancy but the study suggests potential routes to replenishing a hypothalamus denuded of stem cells: preventing their loss in the first place by controlling the inflammation. This might be achieved either through the development of drugs which kill senescent cells or the use of anti-inflammatory compounds.

“The research is important because it elegantly demonstrates how different health maintenance mechanisms interact. However, one downside is that only male mice were used. It is well known that the structure of the hypothalamus differs markedly between the sexes. Drugs and mutations which extend lifespan also usually show markedly .

“Whether humans will ever be able to live significantly longer than the current  is hard to tell. But it seems the greatest barrier to a healthy later life is no longer the rate of progress but the speed with which we can turn our growing knowledge of the biology of ageing into drugs and lifestyle advice.”

 

Back to top

Contact us

91¶¶Òõ
Mithras House
Lewes Road
91¶¶Òõ
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links Quick links

  • Courses
  • Open days
  • Explore our prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • The Student Contract

Information for Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents